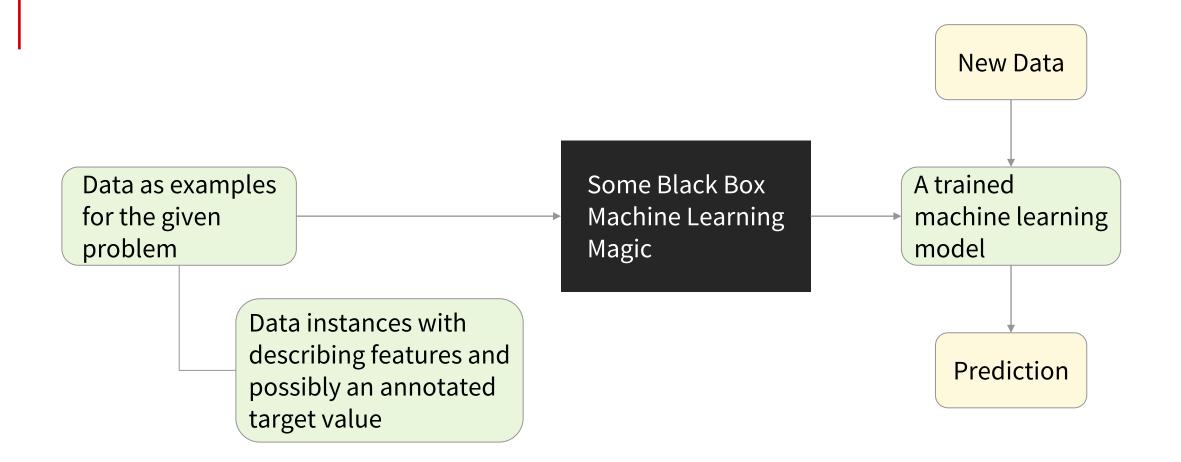


OUT OF THE BLACK BOX! EXPLAINABLE MACHINE LEARNING

Prof. Dr. Korinna Bade

Hochschule Anhalt – Fachbereich Informatik und Sprachen E-Mail: korinna.bade@hs-anhalt.de

MACHINE LEARNING



INTERPRETABILITY AND EXPLAINABILITY

Tim Miller (2017)

>the degree to which an observer can understand the cause of a decision.«

- Been Kim et al. (2016)
 - »...a method is interpretable if a user can correctly and efficiently predict the method's results.«
- From the users perspective!
- Interpretability: Understanding the inner workings of the models
- > Explainability: Explaining the decisions made

Necessity

> Are there significant consequences for unacceptable results?

EXPLAINABILITY

- Intellectual and social motivations
 - Understanding model decisions
 - Gaining trust in model decisions
 - Free of errors
 - Fair, non-discriminatory
- Commercial and legal motivations
 - Improvement of established, analytical processes
 - Compliance with legal regulations

Gender Classifier	Darker Male	Darker Female	Lighter Male	Lighter Female	Largest Gap
Microsoft	94.0%	79.2%	100%	98.3%	20.8%
FACE**	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%

Gender Shades project, MIT Media Lab, CC BY-NC-ND 2017 - 2020

METHODS FOR EXPLAINABILITY

- Models, which are directly interpretable
 E.g. decision trees
- Model specific methods
 - > E.g. methods specific for neural networks
- Model agnostic methods
 - Independent of the model -> used only as black box

Model Agnostic Methods

Model is a black-box

-> Analysis based on input data and observed output

- What we can do:
 - Analyze the given data
 - Visualize dependencies
 - Modify input data and observe the changes in the output
 -> draw conclusions about the model

6

Model Agnostic Methods - Examples

- Permutation feature importance
 - > Which features have the main impact on the prediction?
 - > How?
 - > Observe impact on model performance when permutating feature values
- Partial dependence plot
 - > What is the average correlation between feature and prediction?
- Example based explanations
 - Counterfactual explanations
 - Which minimal change in the feature values of an instance is necessary to gain the desired prediction?
 - Prototypes and critiques
 - Prototype: representative data instance
 - > Critique: data instance not well represented through a prototype

EXPLAINABILITY IN PRATICE

- Examples of two current projects
 - > Explaining clustering in the contect of citizen participation
 - Explaining deep neural networks in the context of object detection for autonomous driving

EXAMPLE 1: EXPLAINING CLUSTERING

- Project in the domain of participatory processes
- Process considered
 - Citizens hand in submissions concerning a development plan of a legal institution
 - E.g. a city wants to plan the development of a property unused so far
 - Institution has to consider all submissions and has to treat them equally



Stadt Unterschleißheim 2022

- Clustering of submissions to bring together similar submission / submissions addressing the same issue
- Questions of explainability
 - > What submissions are in one cluster / in different clusters and why?
 - How does the clustering changes when new submissions arrive or parameters of the algorithm are altered?

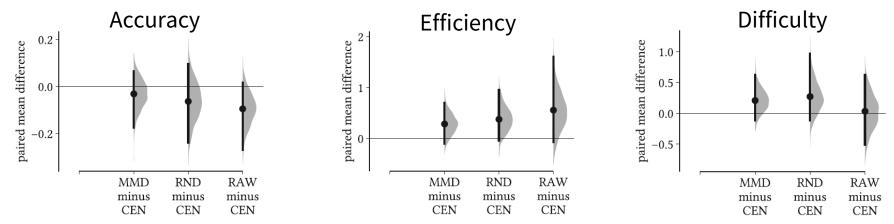
PhD student: Lars Schütz

EXAMPLE 1: EXPLAINING CLUSTERING

Cluster difference model, e.g. for visualization

0	10	20	30	40	50	60	70	80	90	100	110	120	130
40400		×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>			0^/000/0/	0,00,000	>>>	x		2220022	
40100		× 2000 4	×××				0~~~~~~~		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		~~~~~~~	040
0	10	20	30	40	50	60	70	80	90	100	110	120	130
1		****	С		I	1			1	×		0	×
0	10	20	30	40	50	60	70	80	90	100	110	120	130

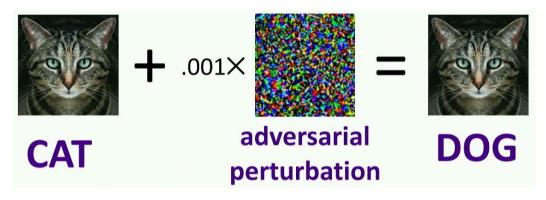
Studying example based explanations with a user study



PhD student: Lars Schütz

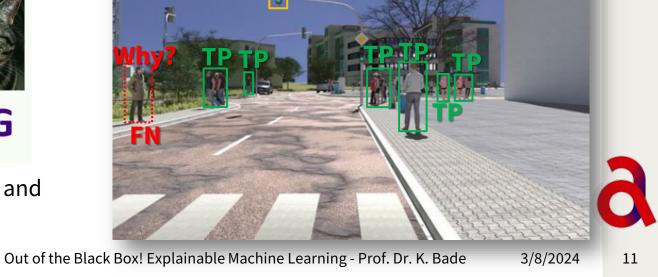
EXAMPLE 2: EXPLAINING DEEP NEURAL NETWORKS

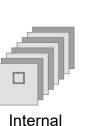
- Project in the domain of autonomous driving
- > Detecting pedestrians in images through deep neural networks
- Goal: identify and understand errors of the detection network
- Challenge: networks are very complex and mathematical models
- Sources of errors different to humans



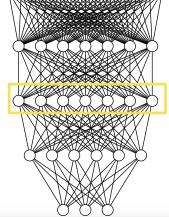
I.J. Goodfellow, J. Shlens, C. Szegedy: Explaining and harnessing adversarial examples, 2015

PhD student: Georgii Mikriukov



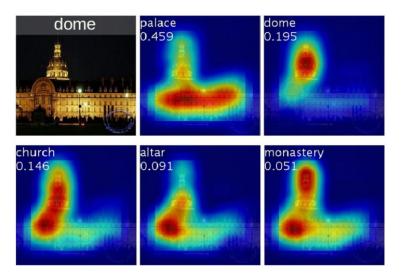


representations



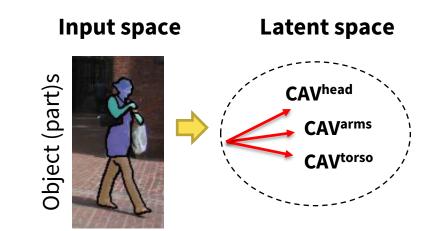
EXAMPLE 2: EXPLAINING DEEP NEURAL NETWORKS

- Saliency maps
 - Simple visualization of layer activation



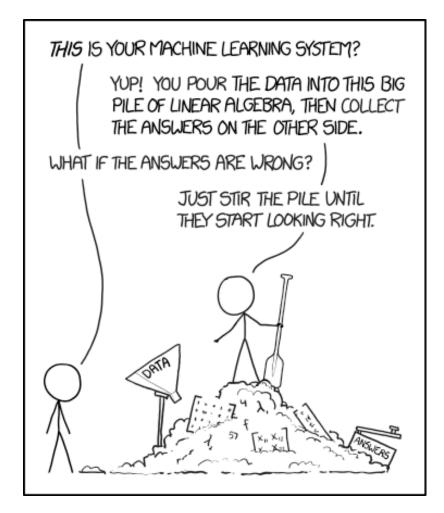
Zhou et al.: Learning deep features for discriminative localization, 2016

- Semantic concepts
 - Vector representation of concepts



Understanding concepts in different layers and networks, e.g. stability and similarity

PhD student: Georgii Mikriukov



Bildquelle: https://xkcd.com/1838

Thank you!

Any questions?

